An Improved Merge-split Sampler for Conjugate Dirichlet Process Mixture Models
نویسنده
چکیده
The Gibbs sampler is the standard Markov chain Monte Carlo sampler for drawing samples from the posterior distribution of conjugate Dirichlet process mixture models. Researchers have noticed the Gibbs sampler’s tendency to get stuck in local modes and, thus, poorly explore the posterior distribution. Jain and Neal (2004) proposed a merge-split sampler in which a naive random split is sweetened by a series of restricted Gibbs scans, where the number of Gibbs scans is a tuning parameter that must be supplied by the user. In this work, I propose an alternative merge-split sampler borrowing ideas from sequential importance sampling. My sampler proposes splits by sequentially allocating observations to one of two split components using allocation probabilities that are conditional on previously allocated data. The algorithm does not require further sweetening and is, hence, computationally efficient. In addition, no tuning parameter needs to be chosen. While the conditional allocation of observations is similar to sequential importance sampling, the output from the sampler has the correct stationary distribution due to the use of the Metropolis-Hastings ratio. The computational efficiency of my sequentially-allocated merge-split (SAMS) sampler is compared to Jain and Neal’s sampler using various values for the tuning parameter. Comparisons are made in terms of autocorrelation times for four univariate summaries of the Markov chains taken at fixed time intervals. In four examples involving different models and datasets, I show that my merge-split sampler usually performs substantially better — in some cases, two to five times faster — than existing methods, and never performs worse.
منابع مشابه
Sequentially-Allocated Merge-Split Sampler for Conjugate and Nonconjugate Dirichlet Process Mixture Models
This paper proposes a new efficient merge-split sampler for both conjugate and nonconjugate Dirichlet process mixture (DPM) models. These Bayesian nonparametric models are usually fit usingMarkov chain Monte Carlo (MCMC) or sequential importance sampling (SIS). The latest generation of Gibbs and Gibbs-like samplers for both conjugate and nonconjugate DPM models effectively update the model para...
متن کاملA Split-merge Markov Chain Monte Carlo Procedure for the Dirichlet Process Mixture Model
We propose a split-merge Markov chain algorithm to address the problem of inee-cient sampling for conjugate Dirichlet process mixture models. Traditional Markov chain Monte Carlo methods for Bayesian mixture models, such as Gibbs sampling, can become trapped in isolated modes corresponding to an inappropriate clustering of data points. This article describes a Metropolis-Hastings procedure that...
متن کاملParallel Sampling of DP Mixture Models using Sub-Clusters Splits
We present an MCMC sampler for Dirichlet process mixture models that can be parallelized to achieve significant computational gains. We combine a nonergodic, restricted Gibbs iteration with split/merge proposals in a manner that produces an ergodic Markov chain. Each cluster is augmented with two subclusters to construct likely split moves. Unlike some previous parallel samplers, the proposed s...
متن کاملParallel Sampling of DP Mixture Models using Sub-Cluster Splits
We present an MCMC sampler for Dirichlet process mixture models that can be parallelized to achieve significant computational gains. We combine a nonergodic, restricted Gibbs iteration with split/merge proposals in a manner that produces an ergodic Markov chain. Each cluster is augmented with two subclusters to construct likely split moves. Unlike some previous parallel samplers, the proposed s...
متن کاملSplitting and Merging Components of a Nonconjugate Dirichlet Process Mixture Model
Abstract. The inferential problem of associating data to mixture components is difficult when components are nearby or overlapping. We introduce a new split-merge Markov chain Monte Carlo technique that efficiently classifies observations by splitting and merging mixture components of a nonconjugate Dirichlet process mixture model. Our method, which is a Metropolis-Hastings procedure with split...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003