An Improved Merge-split Sampler for Conjugate Dirichlet Process Mixture Models

نویسنده

  • David B. Dahl
چکیده

The Gibbs sampler is the standard Markov chain Monte Carlo sampler for drawing samples from the posterior distribution of conjugate Dirichlet process mixture models. Researchers have noticed the Gibbs sampler’s tendency to get stuck in local modes and, thus, poorly explore the posterior distribution. Jain and Neal (2004) proposed a merge-split sampler in which a naive random split is sweetened by a series of restricted Gibbs scans, where the number of Gibbs scans is a tuning parameter that must be supplied by the user. In this work, I propose an alternative merge-split sampler borrowing ideas from sequential importance sampling. My sampler proposes splits by sequentially allocating observations to one of two split components using allocation probabilities that are conditional on previously allocated data. The algorithm does not require further sweetening and is, hence, computationally efficient. In addition, no tuning parameter needs to be chosen. While the conditional allocation of observations is similar to sequential importance sampling, the output from the sampler has the correct stationary distribution due to the use of the Metropolis-Hastings ratio. The computational efficiency of my sequentially-allocated merge-split (SAMS) sampler is compared to Jain and Neal’s sampler using various values for the tuning parameter. Comparisons are made in terms of autocorrelation times for four univariate summaries of the Markov chains taken at fixed time intervals. In four examples involving different models and datasets, I show that my merge-split sampler usually performs substantially better — in some cases, two to five times faster — than existing methods, and never performs worse.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequentially-Allocated Merge-Split Sampler for Conjugate and Nonconjugate Dirichlet Process Mixture Models

This paper proposes a new efficient merge-split sampler for both conjugate and nonconjugate Dirichlet process mixture (DPM) models. These Bayesian nonparametric models are usually fit usingMarkov chain Monte Carlo (MCMC) or sequential importance sampling (SIS). The latest generation of Gibbs and Gibbs-like samplers for both conjugate and nonconjugate DPM models effectively update the model para...

متن کامل

A Split-merge Markov Chain Monte Carlo Procedure for the Dirichlet Process Mixture Model

We propose a split-merge Markov chain algorithm to address the problem of inee-cient sampling for conjugate Dirichlet process mixture models. Traditional Markov chain Monte Carlo methods for Bayesian mixture models, such as Gibbs sampling, can become trapped in isolated modes corresponding to an inappropriate clustering of data points. This article describes a Metropolis-Hastings procedure that...

متن کامل

Parallel Sampling of DP Mixture Models using Sub-Clusters Splits

We present an MCMC sampler for Dirichlet process mixture models that can be parallelized to achieve significant computational gains. We combine a nonergodic, restricted Gibbs iteration with split/merge proposals in a manner that produces an ergodic Markov chain. Each cluster is augmented with two subclusters to construct likely split moves. Unlike some previous parallel samplers, the proposed s...

متن کامل

Parallel Sampling of DP Mixture Models using Sub-Cluster Splits

We present an MCMC sampler for Dirichlet process mixture models that can be parallelized to achieve significant computational gains. We combine a nonergodic, restricted Gibbs iteration with split/merge proposals in a manner that produces an ergodic Markov chain. Each cluster is augmented with two subclusters to construct likely split moves. Unlike some previous parallel samplers, the proposed s...

متن کامل

Splitting and Merging Components of a Nonconjugate Dirichlet Process Mixture Model

Abstract. The inferential problem of associating data to mixture components is difficult when components are nearby or overlapping. We introduce a new split-merge Markov chain Monte Carlo technique that efficiently classifies observations by splitting and merging mixture components of a nonconjugate Dirichlet process mixture model. Our method, which is a Metropolis-Hastings procedure with split...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003